Существует легенда, почти наверняка апокрифическая, которая дает возможность детальнее рассмотреть вопрос о том, каким образом центральная предельная теорема позволяет рассуждать о принципе формирования статистических распределений. Она касается прославленного французского эрудита XIX-ого века Анри Пуанкаре, который, как гласит легенда, в течение одного года каждый день занимался тем, что взвешивал свежую буханку хлеба.
В те времена хлебопекарное ремесло регламентировалось государством, и Пуанкаре обнаружил, что, хотя результаты взвешивания буханок хлеба подчинялись нормальному распределению, пик находился не на публично афишируемом 1 кг, а на 950 г. Он сообщил властям о булочнике, у которого он регулярно покупал хлеб, и тот был оштрафован. Такова легенда ;-).
В следующем году Пуанкаре продолжил взвешивать буханки хлеба того же булочника. Он обнаружил, что среднее значение теперь было равно 1 кг, но это распределение больше не было симметричным вокруг среднего значения. Теперь оно было смещено вправо. А это соответствовало тому, что булочник теперь давал Пуанкаре только самые тяжелые из своих буханок хлеба. Пуанкаре снова сообщил о булочнике властям, и булочник был оштрафован во второй раз.
Было ли это на самом деле или нет здесь не суть важно; этот пример всего лишь служит для того, чтобы проиллюстрировать ключевой момент — статистическое распределение последовательности чисел может сообщить нам нечто важное о процессе, который ее создал.