@biology
BIOLOGY
OFFLINE

Biology

Дата регистрации: 28 июня 2012 года

Персональный блог BIOLOGY — Biology

Алле́ли (от греч. ἀλλήλων — друг друга, взаимно) — различные формы одного и того же гена, расположенные в одинаковых участках (локусах) гомологичных хромосом и определяющие альтернативные варианты развития одного и того же признака. В диплоидном организме может быть два одинаковых аллеля одного гена, в этом случае организм называется гомозиготным, или два разных, что приводит к гетерозиготному организму.

Нормальные диплоидные соматические клетки содержат два аллеля одного гена (по числу гомологичных хромосом), а гаплоидные гаметы — лишь по одному аллелю каждого гена. Для признаков, подчиняющихся законам Менделя, можно рассматривать доминантные и рецессивные аллели. Если генотип особи содержит два разных аллеля (особь — гетерозигота), проявление признака зависит только от одного из них — доминантного. Рецессивный же аллель влияет на фенотип, только если находится в обеих хромосомах (особь — гомозигота). В более сложных случаях наблюдаются другие типы аллельных взаимодействий

Типы аллельных взаимодействий

  • Полное доминирование — взаимодействие двух аллелей одного гена, когда доминантный аллель полностью исключает проявление действия второго аллеля. В фенотипе присутствует только признак, задаваемый доминантной аллелью.
  • Неполное доминирование — доминантный аллель в гетерозиготном состоянии не полностью подавляет действие рецессивного аллеля. Гетерозиготы имеют промежуточный характер признака.
  • Сверхдоминирование — более сильное проявление признака у гетерозиготной особи, чем у любой гомозиготной.
  • Кодоминирование — проявление у гибридов нового признака, обусловленного взаимодействием двух разных аллелей одного гена. Фенотип гетерозигот не является чем-то промежуточным между фенотипами разных гомозигот.
  • Множественные аллели

    Множественный аллелизм — это существование в популяции более двух аллелей данного гена. В популяции оказываются не два аллельных гена, а несколько. Возникают в результате разных мутаций одного локуса. Гены множественных аллелей взаимодействуют между собой различным образом.

    В популяциях как гаплоидных, так и диплоидных организмов обычно существует множество аллелей, для каждого гена. Это следует из сложной структуры гена — замена любого из нуклеотидов или иные мутации приводят к появлению новых аллелей. Видимо, лишь в очень редких случаях любая мутация столь сильно влияет на работу гена, а ген оказывается столь важным, что все его мутации приводят к гибели носителей. Так, для хорошо изученных у человека глобиновых генов известно несколько сотен аллелей, лишь около десятка из них приводит к серьёзным патологиям.

    Летальные аллели

    Летальными называются аллели, носители которых погибают из-за нарушений развития или заболеваний, связанных с работой данного гена. Между летальными аллелями и аллелями, вызывающими наследственные болезни, есть все переходы. Например, больные хореей Хантингтона (аутосомно-доминантный признак) обычно умирают в течение 15—20 лет после начала заболевания от осложнений, и в некоторых источниках предлагается считать этот ген летальным.

    Обозначение аллелей

    Обычно в качестве обозначения аллеля применяют сокращение названия соответствующего гена до одной или нескольких букв; чтобы отличить доминантный аллель от рецессивного, первую букву в обозначении доминантного пишут заглавной.

    Домина́нтность (доминирование) — форма взаимоотношений между аллелями одного гена, при которой один из них (доминантный) подавляет (маскирует) проявление другого (рецессивного) и таким образом определяет проявление признака как у доминантных гомозигот, так и у гетерозигот.

    Рецесси́вный ген (англ. recessive gene) — генетическая информация, которая может подавляться воздействием доминантного гена и не проявляется в фенотипе. Рецессивный ген способен обеспечить проявление определяемого им признака только в том случае, если находится в паре с соответственным рецессивным геном. Если же он находится в паре с доминантным геном, то он не проявляется, так как доминантный ген подавляет его. Свойства, представленные рецессивными генами, проявляются в фенотипе у потомка лишь в том случае, если у обоих родителей присутствует рецессивный ген.

    Полное доминирование

    При полном доминировании фенотип гетерозиготы не отличается от фенотипа доминантной гомозиготы. Видимо, в чистом виде полное доминирование встречается крайне редко или не встречается вовсе. Например, люди, гетерозиготные по гену гемофилии А (сцепленный с Х-хромосомой рецессивный ген), имеют половинное количество нормального фактора свертывания по сравнению с гомозиготными по нормальному аллелю людьми, и активность фактора свертывания VIII у них в среднем вдвое ниже, чем у здоровых людей. В то же время у здоровых людей активность этого фактора варьирует от 40 до 300 % по сравнению со средней для популяции. Поэтому наблюдается значительное перекрывание признаков у здоровых и носителей-гетерозигот. При фенилкетонурии (аутосомно-рецессивный признак) гетерозиготы обычно считаются здоровыми, однако активность печёночного фермента фенилаланин-4-гидроксилазы у них вдвое ниже нормы, а содержание фенилаланина в клетках повышено, что, по некоторым данным, приводит к снижению IQ и повышенному риску развития некоторых психотических расстройств.

    Неполное доминирование

    При неполном доминировании гетерозиготы имеют фенотип, промежуточный между фенотипами доминантной и рецессивной гомозиготы. Например, при скрещивании чистых линий львиного зева и многих других видов цветковых растений с пурпурными и белыми цветками особи первого поколения имеют розовые цветки. При скрещивании чистых линий андалузских кур чёрной и белой окраски в первом поколении рождаются куры серой окраски. На молекулярном уровне самым простым объяснением неполного доминирования может быть как раз двукратное снижение активности фермента или другого белка (если доминантный аллель дает функциональный белок, а рецессивный — дефектный). Например, за белую окраску может отвечать дефектный аллель, который дает неактивный фермент, а за красную — нормальный аллель, который дает фермент, производящий красный пигмент. При половинной активности этого фермента у гетерозигот количество красного пигмента снижается вдвое, и окраска розовая. Могут существовать и другие механизмы неполного доминирования.

    При неполном доминировании во втором поколении моногибридного скрещивания наблюдается одинаковое расщепление по генотипу и фенотипу в соотношении 1:2:1.

    Кодоминирование

    При кодоминировании, в отличие от неполного доминирования, у гетерозигот признаки, за которые отвечает каждый из аллелей, проявляются одновременно (смешанно). Типичный пример кодоминирования — наследование групп крови системы АВ0 у человека. Всё потомство людей с генотипами АА (вторая группа) и ВВ (третья группа) будет иметь генотип АВ (четвертая группа). Их фенотип не является промежуточным между фенотипами родителей, так как на поверхности эритроцитов присутствуют оба агглютиногена (А и В). При кодоминировании назвать один из аллелей доминантным, а другой — рецессивным нельзя, эти понятия теряют смысл: оба аллеля в равной степени влияют на фенотип. На уровне РНК и белковых продуктов генов, видимо, подавляющее большинство случаев аллельных взаимодействий генов — это кодоминирование, ведь каждый из двух аллелей у гетерозигот обычно кодирует РНК и/или белковый продукт, и оба белка или РНК присутствуют в организме.

    Относительный характер доминирования

    Как уже отмечалось выше, характер доминирования зависит от уровня анализа признака. Рассмотрим это на примере серповидно-клеточной анемии. Гетерозиготные носители гена гемоглобина S (AS) на уровне моря имеют нормальную форму эритроцитов и нормальную концентрацию гемоглобина в крови (полное доминирование А над S). На больших высотах (более 2,5-3 тыс. м) у гетерозигот концентрация гемоглобина понижена (хотя и намного выше, чем у больных), появляются эритроциты серповидной формы (неполное доминирование А над S). Этот пример показывает, что доминантность может зависеть от условий. Гетерозиготы AS и гомозиготы SS обладают примерно одинаковой устойчивостью к малярии, гомозиготы АА подвержены малярии в большей степени. По данному проявлению ген S доминирует над А. Наконец, в эритроцитах носителей АS в равных количествах присутствуют оба варианта бета-глобиновых цепей — нормальный А и мутантный S (то есть наблюдается кодоминирование).

    Сущность гибридологического метода изучения наследственности состоит в том, что о генотипе организма судят по признакам его потомков, полученных при определенных скрещиваниях. Основы этого метода были заложены работами Г. Менделя. Мендель скрещивал между собой сорта гороха, различающиеся теми или иными признаками (формой и окраской семян, окраской цветков, высотой стебля и др.), а затем следил, как наследуются признаки того и другого родителя их потомками в первом, втором и последующих гибридных поколениях. Проделав эту работу на достаточно большом количестве растений, Г.Мендель смог установить очень важные статистические закономерности количественного соотношения гибридных растений, обладающих признаками того и другого исходного сорта.

    Позднее аналогичные исследования были осуществлены очень многими генетиками на различных Менделем на горохе, имеют общебиологическое значение, так как подтверждаются на самых разнообразных объектах.

    Наиболее простой тип скрещивания при гибридологическом анализе — моногибридное скрещивание, когда родительские формы различаются между собой только одной парой признаков. Примером моногибридного скрещивания может служить скрещивание между желтозерным и зеленозерным сортами гороха, проведенное Менделем. Для изложения его результатов воспользуемся обозначениями, принятыми в генетике: Р — родительские формы (сорта); F1— гибриды первого поколения; — гибриды второго поколения (F3 — третьего, F4 — четвертого и т. д.); X—знак скрещивания; ↓ — знак, свидетельствующий о том, что следующее поколение получено путем самоопыления; А, а — две буквы, обозначающие пару контрастирующих признаков, которыми различаются родительские формы, взятые в скрещивание (в нашем случае А — желтая и а — зеленая окраска семян гороха).

    Мендель получил такие результаты при моногибридном скрещивании между желтозерным и зеленозерным горохом:

    Р: А x а
    F1: А
    F2: ЗА:1а

    Биохимический метод основан на изучении характера биохимических реакций в организме, обмена веществ для установления носительства аномального гена или уточнения диагноза. Заболевания, в основе которых лежит нарушение обмена веществ, составляют значительную часть генной наследственной патологии. К ним относятся сахарный диабет, фенилкетонурия (нарушение обмена фенилаланина), галактоземия (нарушение усвоения молочного сахара) и другие. Этот метод позволяет установить болезнь на ранней стадии и лечить ее.

    Близнецовый метод основан на изучении фенотипа и генотипа близнецов для определения степени влияния среды на развитие различных признаков. Этот метод в 1876 г. предложил английский исследователь Ф. Гальтон для разграничения влияния наследственности и среды на развитие различных признаков у человека.

    Среди близнецов выделяются однояйцевые и двуяйцевые.

    Рис. Схема образования двух типов близнецов:

    I – однояйцевые; II – двуяйцевые.

    Однояйцевые близнецы (идентичные) образуются из одной зиготы, разделившейся на ранней стадии дробления на две части. В этом случае одна оплодотворенная яйцеклетка дает начало не одному, а сразу двум зародышам. Они имеют одинаковый генетический материал, всегда одного пола, и наиболее интересны для изучения. Сходство у таких близнецов почти абсолютное. Мелкие различия могут объясняться влиянием условий развития.

    Двуяйцевые близнецы (неидентичные) образуются из различных зигот, в результате оплодотворения двух яйцеклеток двумя сперматозоидами. Они похожи друг на друга не более чем родные братья или сестры, рожденные в разное время. Такие близнецы могут быть однополыми и разнополыми.

    Близнецовый метод позволяет определить степень проявления признака у пары, влияние наследственности и среды на развитие признаков. Все различия, которые проявляются у однояйцевых близнецов, имеющих одинаковый генотип, связаны с влиянием внешних условий. Большой интерес представляют случаи, когда такая пара была по каким-то причинам разлучена в детстве и близнецы росли и воспитывались в разных условиях.

    Изучение разнояйцевых близнецов позволяет проанализировать развитие разных генотипов в одинаковых условиях среды. Близнецовый метод позволил установить, что для многих заболеваний значительную роль играют условия среды, при которых происходит формирование фенотипа.

    Например, такие признаки как группа крови, цвет глаз и волос определяются только генотипом и от среды не зависят. Некоторые заболевания, хотя и вызываются вирусами и бактериями, в некоторой степени зависят от наследственной предрасположенности. Такие заболевания, как гипертония и ревматизм, в значительной степени определяются внешними факторами и в меньшей степени – наследственностью.

    Таким образом, близнецовый метод позволяет выявить роль генотипа и факторов среды в формировании признака, для чего изучаются и сравниваются степени сходства (конкордантность) и различий (дискордантность) монозиготных и дизиготных близнецов.

    Генеалогический метод основан на составлении родословной человека и изучении характера наследования признака. Впервые этот метод был предложен Ф. Гальтоном в 1865 г. Это самый давний метод. Суть его состоит в установлении родословных связей и определении доминантных и рецессивных признаков и характера их наследования. Особенно эффективен этот метод при исследовании генных мутаций.

    Метод включает два этапа: сбор сведений о семье за возможно большее число поколений и генеалогический анализ. Родословная составляется, как правило, по одному или нескольким признакам. Для этого собираются сведения о наследовании признака среди близких и дальних родственников. При составлении родословной используются специльные символы:

    Представителей одного поколения располагают в одном ряду в порядке их рождения.

    Далее начинается второй этап – анализ родословной с целью установления характера наследования признака. В первую очередь устанавливается, как проявляется признак у представителей разных полов, т.е. сцепленность признака с полом. Далее определяется, является ли признак доминантным или рецессивным, сцеплен ли он с другими признаками и т.д. При рецессивном характере наследования признак проявляется у небольшого числа особей не во всех поколениях. Он может отсутствовать у родителей. При доминантном наследовании признак часто встречается практически во всех поколениях.

    Характерной особенностью наследования признаков, сцепленных с полом, является их частое проявление у лиц одного пола. В случае, если этот признак доминантный, то он чаще встречается у женщин. Если признак рецессивный, то в этом случае он чаще проявляется у мужчин.

    Анализ многочисленных родословных и характер распространения признака в обширной человеческой популяции помогли генетикам установить характер наследования многих нормальных признаков человека, таких как курчавость и цвет волос, цвет глаз, веснушчатость, строение мочки уха и т.д., а также такие аномалии, как дальтонизм, серповидно-клеточная анемия и др.

    Именно генеалогическим методом удалось определить характер наследования гемофилии. Исследование родословной британского королевского дома показало, что признак является рецессивным и сцеплен с полом. Носителем рецессивного гена оказалась британская королева Виктория.

    Таким образом, с помощью метода родословных устанавливается зависимость признака от генетического материала, тип наследования (доминантный, рецессивный, аутосомный, сцепленный с половыми хромосомами), наличие сцепления генов, зиготность (гомозиготность или гетерозиготность) членов семьи, вероятность наследования гена в поколениях, семьи, вероятность наследования гена в поколениях, наследования гена в поколениях, тип наследования признака.

    Рис. Типы наследования: 1 – доминантного признака полидактилии (шестипалости); 2 – рецессивного признака серповидно-клеточной анемии; 3 – признака дальтонизма, сцепленного с полом
    При аутосомно-доминантном наследовании (появление признака связано с доминантным геном) признак, как правило, проявляется в каждом поколении (наследование по горизонтали). При аутосомно-рецессивном наследовании признак проявляется редко, не в каждом поколении (наследование по вертикали), однако, в родственных браках больные дети рождаются чаще. При наследовании, сцепленном с полом, частота проявления признака у особей разного пола неодинакова.

    Генеалогические исследования показали, что некоторые способности человека – музыкальность, математический склад ума – также определяются наследственными факторами. Генеалогическим методом доказано наследование у человека сахарного диабета, глухоты, шизофрении, слепоты. Этот метод используется для диагностики наследственных заболеваний и медико-генетического консультирования. По характеру наследования определяется вероятность рождения ребенка с генетическими аномалиями.

    Цитогене́тика (от греч. κύτος — «клетка» и γενητως — «происходящий от кого-то» ;) — раздел генетики, изучающий закономерности наследственности во взаимосвязи со строением и функциями органоидов, в особенности хромосом[1][2]. Методы цитогенетики включают в себя анализ G-бэндинга, флуоресцентную in situ гибридизацию, сравнительную геномную гибридизацию и другие. Часто задачей цитогенетического анализа является определение патологического кариотипа.

    Цитогенетический метод используют для изучения нормального кариотипа человека, а также при диагностике наследственных заболеваний, связанных с геномными и хромосомными мутациями. Кроме того, этот метод применяют при исследовании мутагенного действия различных химических веществ, пестицидов, инсектицидов, лекарственных препаратов и др. В период деления клеток на стадии метафазы хромосомы имеют более четкую структуру и доступны для изучения. Диплоидный набор человека состоит из 46 хромосом: 22 пар аутосом и одной пары половых хромосом (XX — у женщин, XY — у мужчин). Обычно исследуют лейкоциты периферической крови человека, которые помещают в специальную питательную среду, где они делятся. Затем готовят препараты и анализируют число и строение хромосом. Разработка специальных методов окраски значительно упростила распознавание всех хромосом человека, а в совокупности с генеалогическим методом и методами клеточной и генной инженерии дала возможность соотносить гены с конкретными участками хромосом. Комплексное применение этих методов лежит в основе составления карт хромосом человека. Цитологический контроль необходим для диагностики хромо- сомных болезней, связанных с ансуплоидией и хромосомными мутациями. Наиболее часто встречаются болезнь Дауна(трисомия по 21-й хромосоме), синдром Клайнфелтера (47 XXY), синдром Шершевского — Тернера (45 ХО) и др. Потеря участка одной из гомологичных хромосом 21-й пары приводит к заболеванию крови — хроническому миелолейкозу. При цитологических исследованиях интерфазных ядер со- матических клеток можно обнаружить так называемое тельце Барри, или половой хроматин. Оказалось, что половой хроматин в норме есть у женщин и отсутствует у мужчин. Он представляет собой результат гетерохроматизации одной из двух Х-хромосом у женщин. Зная эту особенность, можно идентифицировать половую принадлежность и выявлять аномальное количество Х-хромосом. Выявление многих наследствен- ных заболеваний возможно еще до рождения ребенка. Метод пренатальной диагностики заключается в получении околоплодной жидкости, где находятся клетки плода, и в последующем биохимическом и цитологическом определении возможных наследственных аномалий. Это позволяет поставить диагноз на ранних сроках беременности и принять решение о се продолжении или прерывании.

    Идиоадаптация (от греч. ídios — свой, своеобразный, особый и адаптация), одно из главных направлений эволюции, при котором возникают частные изменения строения и функций органов при сохранении в целом уровня организации предковых форм.

    Примеры

    Примерами идиоадаптаций у животных могут служить особенности строения конечностей (например, у крота, копытных, ластоногих), особенности клюва (у хищных птиц, куликов, попугаев), приспособления придонных рыб (у скатов, камбаловых), покровительственная окраска насекомых и др. Примерами идиоадаптации у растений могут служить многообразные приспособления к опылению, распространению плодов и семян, колючки и т.д.

    Виды Идиоадаптации

    • вид первый - по форме

    (палочник, обтекаемая форма у водных животных)

    • вид второй - по окраске
    а) покровная окраска (ящерицы, "линьки" -зайцы) б) предупредительная окраска (красные насекомые, муха жужелица)
    • вид третий - по размножению

    (подбрасываемые кукушкой яиц в чужие гнёзда, забота о питомцах)

    • вид четвёртый - по передвижению

    (перепонки водоплавающих птиц, моржи, тюлени) (воздушные мешки, трубчатые кости и киль у птиц)

    • вид пятый - приспособления к условиям окружающей среды

    (подкожный жир, линька и т.д.)

    Наследственная изменчивость обусловлена возникновением разных типов мутаций и их комбинаций в последующих скрещиваниях.

    В каждой достаточно длительно существующей совокупности особей спонтанно и ненаправленно возникают различные мутации, которые в дальнейшем комбинируются более или менее случайно с разными уже имеющимися в совокупности наследственными свойствами.

    Комбинативная изменчивость

    Комбинативная изменчивость — изменчивость, которая возникает вследствие рекомбинации генов во время слияния гамет. Основные причины:

    • независимое расхождение хромосом во время мейоза;
    • случайная встреча половых гамет, а вследствие этого и сочетания хромосом во время оплодотворения;
    • рекомбинация генов вследствие кроссинговера.

    Мутационная изменчивость

    Мутационная изменчивость — изменчивость, вызванная действием на организм мутагенов, вследствие чего возникают мутации (реорганизация репродуктивных структур клетки). Мутагены бывают физические (радиационное излучение), химические (гербициды) и биологические (вирусы).

    Основные положения мутационной теории разработаны Гуго де Фризом в 1901—1903 гг. и сводятся к следующему:

  • Мутации возникают внезапно, скачкообразно, как дискретные изменения признаков.
  • В отличие от ненаследственных изменений мутации представляют собой качественные изменения, которые передаются из поколения в поколение.
  • Мутации проявляются по-разному и могут быть как полезными, так и вредными, как доминантными, так и рецессивными.
  • Вероятность обнаружения мутаций зависит от числа исследованных особей.
  • Сходные мутации могут возникать повторно.
  • Мутации ненаправленны (спонтанны), то есть мутировать может любой участок хромосомы, вызывая изменения как незначительных, так и жизненно важных признаков.
  • Почти любое изменение в структуре или количестве хромосом, при котором клетка сохраняет способность к самовоспроизведению, обусловливает наследственное изменение признаков организма. По характеру изменения генома, то есть совокупности генов, заключенных в гаплоидном наборе хромосом, различают генные, хромосомные и геномные мутации.

    Примеры нормы генетических изменений

    • одним из механизмов, лежащих в основе возникновения разнообразия антител, являются запрограммированные изменения генов иммуноглобулинов, которые закрепляются в геноме лимфоцитов в результате их отбора в онтогенезе.
    • Высокий темп изменений некоторых генетических локусов у паразитических организмов, например, у трипаносом, в результате которых меняется структура антигенных детерминант на поверхности их клеток, необходим для их выживания, так как помогает этим организмам избежать нейтрализующего действия иммунной системы организма-хозяина.
    • абсолютный консерватизм в передаче генетической информации по вертикали сделал бы невозможным филогенетическое развитие организмов, их эволюционные преобразования, приведшие, в конечном счете, к тому разнообразию биологических видов, которое сегодня наблюдается в природе.

    Роль в эволюции

    На наследственной изменчивости основано всё разнообразие индивидуальных различий, которые включают:

    • Как резкие качественные различия, не связанные друг с другом переходными формами, так и чисто количественные различия, образующие непрерывные ряды, в которых близкие члены ряда могут отличаться друг от друга сколь угодно мало;
    • Как изменения отдельных признаков и свойств (независимая изменчивость), так и взаимосвязанные изменения ряда признаков (коррелятивная изменчивость);
    • Как изменения, имеющие приспособительное значение (адаптивная изменчивость), так и изменения «безразличные» или даже снижающие жизнеспособность их носителей (неадаптивная изменчивость).

    Метаморфо́з (от др.-греч. μεταμόρφωσις — «превращение», у животных называется также метаболи́ей) — глубокое преобразование строения организма (или отдельных его органов), происходящее в ходе индивидуального развития (онтогенеза). Метаморфоз у растений и животных существенно различается.

    Метаморфоз у растений

    Выражается в видоизменениях основных органов, происходящих в онтогенезе и связанных со сменой выполняемых ими функций или условий функционирования. Истинный метаморфоз — превращение одного органа в другой с полной сменой формы и функции, происходит у многих травянистых растений (постепенное отмирание надземного побега и переход в корневище, луковицу, клубнелуковицу на время неблагоприятного периода). В большинстве же случаев метаморфозу подвергаются не дифференцированные органы взрослого растения, а их зачатки, например, при превращении части побегов и листьев в колючки, усики. Детерминация зачатка органа, определяющая его окончательный облик и происходящая на разных этапах его развития, связана с накоплением определенных физиологически активных веществ и зависит от внешних и внутренних факторов.

    Метаморфоз у животных

    В отличие от растений, у животных при метаморфозе изменению подвергается всё строение организма. Метаморфоз свойственен большинству групп беспозвоночных и некоторым позвоночным — миногам, ряду рыб, земноводным. Обычно метаморфоз связан с резкой сменой образа жизни животного в онтогенезе, например, с переходом от свободноплавающего к прикрепленному образу жизни, от водного — к наземному и т. д. В жизненном цикле животных, развивающихся с метаморфозом, бывает хотя бы одна личиночная стадия, существенно отличающаяся от взрослого животного. У таких животных разные стадии онтогенеза выполняют разные жизненные функции, способствующие сохранению и процветанию вида (например, на личиночной стадии происходит расселение, а на взрослой — питание и рост). Регуляция метаморфоза у животных осуществляется гормонами.

    Метаморфоз у беспозвоночных

    Для низших беспозвоночных (губки, кишечнополостные) характерен метаморфоз, при котором различные свободноплавающие личинки выполняют функцию расселения вида. Часто такой метаморфоз осложняется чередованием поколений, размножающихся половым либо бесполым путем. При метаморфозе без чередования поколений из яйца выходит личинка, выполняющая функцию расселения вида (например, трохофора морских многощетинковых червей, велигер моллюсков). Своеобразен некротический метаморфоз, характерный для немертин, при котором будущая взрослая особь развивается внутри личинки, при этом основная масса тела личинки отмирает. Переход морских организмов к жизни в пресной воде и на суше часто вызывает утрату личиночных стадий развития. Варианты метаморфоза, при которых сходная со свободноживущей личинкой стадия проходит внутри яйцевых оболочек (как, например, у виноградной улитки, которая стадию велигера проходит в яйце), называются криптометаболией.

    Метаморфоз у многоножек и насекомых

    У многих многоножек изменения в течение жизни связаны лишь с увеличением числа сегментов тела и члеников усиков (т. н. анаморфоз). Для большинства первичнобескрылых и ряда многоножек характерно развитие без существенных изменений — протоморфоз или протометаболия. Развитие крыльев у насекомых привело к существенным изменениям онтогенеза. Если образ жизни личинки и имаго сходен, личинка сходна со взрослым насекомым, и изменения в основном сводятся к постепенному развитию крыльев и половых органов, говорят о неполном превращении. Если же в онтогенезе происходит резкое разделение основных функций (питания, расселения и размножения) между личинкой и имаго, а сами личинки мало похожи на взрослых особей, то говорят о полном превращении. Переход личинки во взрослую форму в этом случае осуществляется посредством куколки.

    Метаморфоз у позвоночных

    Среди позвоночных метаморфоз резко проявляется только у круглоротых, личинка которых — пескоройка — живет в грунте, а взрослые особи — полупаразиты рыб, и у земноводных, из яиц которых выходит головастик и в процессе метаморфоза происходит постепенная утрата личиночных органов и появление взрослых.


    Паренхи́ма (др.-греч. παρέγχυμα, буквально — налитое рядом) — ткань внутренней среды многоклеточных организмов, состоящая из приблизительно одинаковых неполяризованных клеток. Также используется для опоры. Ткани, классифицируемые как паренхиматозные, встречаются у сосудистых растений и у представителей ряда групп многоклеточных животных и губок.

    BIOLOGY

    Самые популярные посты

    130

    Аллели

    Алле́ли (от греч. ἀλλήλων — друг друга, взаимно) — различные формы одного и того же гена, распо...

    20

    Идиоадаптация.

    Идиоадаптация (от греч. ídios — свой, своеобразный, особый и адаптация), одно из главных направлений эволюции, при котором в...

    20

    Цитогенетический метод.

    Цитогене́тика (от греч. κύτος — «клетка» и γενητως &mdas...

    19

    Метаморфоз.

    Метаморфо́з (от др.-греч. μεταμόρφωσις — «превращение», у живот...

    19

    Наследственная изменчивость.

    Наследственная изменчивость обусловлена возникновением разных типов мутаций и их комбинаций в последующих скрещиваниях. В каждой достато...

    19

    Генеалогический метод.

    Генеалогический метод основан на составлении родословной человека и изучении характера наследования признака. Впервые этот метод был пре...